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ABSTRACT
This paper describes collaborative work between active tra-
ders, regulators, economists, and supercomputing researchers
to replicate and extend investigations of the Flash Crash an d
other market anomalies in a National Laboratory HPC envi-
ronment. Our work suggests that supercomputing tools and
methods will be valuable to market regulators in achieving
the goal of market safety, stability, and security.

Currently the key mechanism for preventing catastrophic
market action are \circuit breakers." We believe a more
graduated approach, similar to the \yellow light" approach
in motorsports to slow down tra�c, might be a better way
to achieve the same goal. To enable this objective, we study
a number of indicators that could foresee hazards in mar-
ket conditions and explore options to con�rm such predic-
tions. Our tests con�rm that Volume Synchronized Prob-
ability of Informed Trading (VPIN) and a version of vol-
ume Her�ndahl-Hirschman Index (HHI) for measuring mar-
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ket fragmentation can indeed give strong signals ahead of
the Flash Crash event on May 6 2010. This is a preliminary
step toward a full-edged early-warning system for unusual
market conditions.

Categories and Subject Descriptors
J.0 [Computer Applications ]: General

General Terms
Design, Performance

Keywords
Flash crash, liquidity, ow toxicity, market microstructu re,
probability of informed trading, VPIN, circuit breakers, m ar-
ket fragmentation. (JEL codes: C02, D52, D53, G14.)

1. INTRODUCTION
After the dramatic Flash Crash of May 6, 2010, it took

more than four months in order for the SEC/CFTC to issue
a full report on the event [2,3]. Such a long duration of time
was required because the government currently relies on a
m�elange of legacy systems. The SEC and CFTC clearly
realized the limitations, and have called for comments in
a 203-page discussion of the proposed next-generation sys-
tem: CATS (Consolidated Audit Trail System) [18]. In com-
puter science, visionary scientists like Jim Gray have devel-
oped technologies and tools to foster a brand new approach
for scienti�c discoveries termed \data-intensive science [10]".
This paper reports our initial attempt to adapt some key
techniques to address the information technology needs of
�nancial regulatory agencies.

A basic tool in regulating the �nancial market is the \cir-
cuit breaker" that stops trading. However, many traders
and academicians have compared this approach of on/o�
circuit breakers to \applying the rules of the road to air-
craft." As di�erent markets and venues become more inter-
dependent, sudden halts in one market segment can ripple
into others [13]. One key observation is that brown-outs are
preferable to black-outs. After the Flash Crash of 2010, new
circuit breakers were instituted that stop the trading of in -
dividual stocks if their price variations exceed a prescrib ed
threshold. However, this approach is insu�cient for achiev -
ing safety and stability. We propose to detect and predict
hazardous conditions in real-time. If successful, this would



allow the regulatory agencies to implement a \yellow light"
approach, to slow down, rather than stop markets.

In this work, we seek to explore three aspects of imple-
menting these early warning indicators: i) �nding indicato rs
that can provide early warnings, ii) better understanding o f
their computational requirements, and iii) implementing a n
interactive exploratory system for validation of warning i n-
dicators and to allow expert veri�cation in cases requiring
extraordinary actions.

Based on recommendations from large traders, regulators,
and academicians, we have implemented two sets of indica-
tors from institutional traders that have been shown to have
\early warning" properties preceding the Flash Crash. They
are the Volume Synchronized Probability of Informed Trad-
ing [7] (VPIN) and a variant of Her�ndahl-Hirschman Index
(HHI) of market fragmentation [9, 11]. We describe how
to organize data to e�ciently compute these indicators and
how to parallelize the computational tasks on a high per-
formance computer (HPC) system. Because the automated
indicators may need to be veri�ed if a critical action is to
be taken, we also explore the option of interactively verify -
ing warnings with comparisons to historical data by using
a high-performance search and visualization tool. One ma-
jor operational challenge in the future will be to perform
all these tasks { including computation and veri�cation of
market warnings { in real-time.

2. BACKGROUND

2.1 Levels of Financial Market Data
In this section, we briey describe the types of data used

in our work. Literature on market microstructure often refe r
to six levels of market data [16], due to space limitation, we
mention the �rst three levels.

2.1.1 Level 1 – Transactions
The most basic form of market data is a time series of

trades or transactions, typically including price, volume ,
time and trading venue for each trade. Many �nancial time
series, such as the Dow-Jones Industrial Average, are weighted
averages of stock trades.

2.1.2 Level 2 – BBO Quotes
Level 2 data consists of all transactions from Level 1,

plus the \inside quotes," i.e., the best bid and o�er price
for each security in the combined markets included in the
data. The best known example of Level 2 data is the Trades
And Quotes (TAQ) data originally developed by the New
York Stock Exchange [15]. It is used extensively by the re-
search community. Current version of TAQ data includes
Level 2 data from many market fragments including NYSE,
NASDAQ, ARCA, and BATS. This type of data contains
considerably more information than Level 1 data, but at
about a few GB per day it is also quite convenient for anal-
ysis and is used in our current work. A sample using TAQ
data to describe the Flash Crash event on May 6, 2010 is
shown in Figure 1.

2.1.3 Level 3 – Limit Order Book
In a typical exchange, there is an electronic Limit Order

Book (LOB) that contains all current waiting quotes. The
Best Bid/O�er (BBO) quotes included in Level 2 are the
quotes that are closest to each other for a stock. There

Figure 1: Using Level 2 data shows the bizarre
behavior in the trades and quotes for Accenture
(ACN), one of the stocks most extremely im-
pacted during the Flash Crash. (Source: May 18
CFTC/SEC report, pg 35)

are many limit orders in the LOB with prices away from
the BBO. With decimal penny pricing replacing the old 1/8
and 1/16, these quotes have become more important. With
ever faster electronic market access, they could change very
rapidly, in milli- to micro-seconds. A typical LOB data set
is a snapshot in time, showing prices, and total sizes at each
price. In some versions, the breakdown of the many orders
comprising the total size at a price is also included.

2.2 Market Indicators for Early Warning of
Anomalies

Numerous indicators have been devised to measure as-
pects of the �nancial market. We start by examining a few
indicators that are known to provide early warning signals
for the Flash Crash of May 6, 2010. They are the Volume-
Synchronized Probability of Informed Trading (VPIN) [7]
and the Her�ndahl-Hirschman Index (HHI) [9,11]. Because
these indicators revealed unusual behavior on May 6, 2010,
they might also detect other unusual activities.

VPIN measures the balance between buy and sell activi-
ties [7]. An earlier version of this indicator is called Prob abil-
ity of Informed Trading (PIN) [6]. The key change in VPIN
is to use bins with the same trading volume instead of bins
with the same time span. The VPIN authors refer to this
as measuring the buy-sell imbalance in volume-time instead
of clock-time. Furthermore, instead of using the relative i m-
balance value directly, which can be di�erent for di�erent
commodities, the authors normalized them using the func-
tion � that de�nes the Cumulative Distribution Function
of a normal distribution. Because of this normalization, a
single threshold, T = 0 :9, can be used for many di�erent
stocks. With suitable parameters, the authors have shown
that the VPIN reaches 0.9 more than an hour before the
Flash Crash on May 6, 2010. This is the strongest early
warning signal known to us at this time. To a large extent,



our computation of VPIN replicates the one used by Easley
et al. [6]. In fact, the developers of VPIN have shared a
Python implementation of their program with us and our
C++ implementation reproduces exactly the same values
on the same input values. A key di�erence is that we com-
pute VPIN values of individual stocks while the earlier work
computes VPIN values on SP500 futures.

Another indicator producing a clear early warning signal
for the Flash Crash of 2010 was a market fragmentation
measure based on HHI [14]. The particular version used in
this work is called the Volume Her�ndahl Index, but many
other variations exist in the literature. Because we only us e
the Volume Her�ndahl Index in this work, we simply refer to
it as HHI in later discussions. During a given time window,
say �ve minutes, the fractions of trade volumes executed
by di�erent stock exchanges can be computed. HHI is the
sum of squares of these fractions [9, 11]. Variations of HHI
are widely used to measure the concentration of industrial
production and other economic power [5,20].

In [14], Madhavan computes a single HHI value for an
entire day. In an attempt to use HHI as an early warning
indicator, Madhavan suggested that we break each day into
small intervals. Here, we choose to use 5-minute bins. Fur-
thermore, to detect \abnormal" values, we de�ne a reference
window of twelve bins that covers the hour preceding the
current bin. We use the bins in the reference window to
compute a mean and a standard deviation. We declare an
HHI to be \abnormal" if it is more than x times the stan-
dard deviation away from the mean. Note that an x value
of 1:645 is equivalent to the choice of 0.9 as the threshold
for VPIN.

2.3 Data Management
In order to perform the above mentioned computations

e�ectively, the required data must be in the appropriate for -
mat. For example, the widely available TAQ (Trades And
Quotes) data [15] is available typically on a CD or DVD with
extraction program that runs only on MS Windows plat-
forms. Since most of the HPC systems run Linux operating
systems, TAQ data requires a transformation step before it
can be used on HPC platforms. Many other collections of
data have a similar limitation.

Even if the computing platform is based on MS Windows,
the data extraction program, such as the one provided with
the TAQ data distribution, produces Comma-Separated Val-
ues (CSV), i.e., an ASCII representation of the values. This
representation typically requires more bytes than the cor-
responding binary representation and requires signi�cant ly
more time to read into memory. Because the data records in
ASCII require di�erent numbers of bytes, it is more di�cult
to skip unwanted bytes to directly extract a speci�c data
record. Other data distributions, e.g., by Nanex, do not re-
quire an intermediate conversion to ASCII. However, many
of them still require the user to go through each data record,
without obvious means for skipping unwanted records.

One way to provide high-performance data access is to
store the data records in a commercial database manage-
ment system (DBMS). Some DBMS have extensive support
for operations on �nancial data series. However, to achieve
higher performance and to have more control over the analy-
sis operations, we have taken the approach used by many sci-
enti�c applications { using a high-level data format librar y,

Figure 2: HDF5 data-layout used for storing trades
data showing: i) the organization of the data
via HDF5 groups and datasets (blue), ii) exam-
ple meta-data for ACN, 05/06/2010 (red), and iii)
spreadsheet-view of PRICE and SIZE data array for
ACN, 05/06/2010 (yellow).

more speci�cally the Hierarchical Data Format version 5, or
HDF5 [8].

3. CASE STUDY
The goal of this case study is to evaluate how high-perfor-

mance computing can support �nancial data analysis and,
in particular, the development and implementation of early
warning systems for detection and analysis of market anoma-
lies. Development and evaluation of reliable indicators fo r
market anomalies requires thorough analysis of the e�ectiv e-
ness of such indicators on large amounts of historic data.
We need to be able to: i) store and process large amounts
of data, ii) e�ciently compute market indicators, and iii)
quickly extract and analyze portions of data during which
abnormal market behavior is indicated.

3.1 File Format
Enabling e�cient analysis of large amounts of data funda-

mentally relies on e�ective data organization and storage t o
optimize I/O performance. In this work we adopt HDF5 [8]
{ a state-of-the-art, open, scienti�c data format { for stor ing
�nancial data. Figure 2 illustrates the HDF5 data-layout we
are using for storing TAQ data. We organize the data into
groups based on the data type (trades, quotes), date, and
stock symbol. Each complete group (e.g. trades=20100506=
ACN ) then contains a set of 1D HDF5 datasets of vary-
ing types (e.g., P RICE stored as oats, or SIZE stored
as integers). Additional information about the data, like
the time format, and simple statistics are stored as HDF5
attributes associated with the corresponding datasets and
groups. SZIP compression can further signi�cantly reduce
�le size, by a factor of 5-7 in the case of TAQ data, while
enabling fast decompression and, hence, data access. Ta-
ble 1 compares the storage requirements of an example TAQ
dataset in di�erent formats.

Using HDF5 for storing �nancial data has many advan-
tages. HDF5 is portable, easy to use, e�cient with respect
to storage and I/O performance, supports compression and



CSV CSV
(zip)

HDF5 HDF5
(SZIP)

Index

Trades 2,769 215 1,326 472 1,803
Quotes 38,566 3,058 28,844 5,377 24,784

Table 1: File sizes in mega-byte (MB) for example
TAQ data using di�erent �le formats. The datasets
contain three days worth of trades and quotes for
S&P 500 symbols.

parallel I/O, and provides additional tools for browsing, v al-
idation and pro�ling (e.g., HDFView). HDF5 is optimized
for large data �les and enables us to store months to years
worth of �nancial data in a single �le while maintaining
easy data access. Furthermore, HDF5 enables the use of ad-
vanced HPC index and search software [17]. In our case, we
use the FastQuery software to index and search the data [4].

3.2 Computing Market Indicators
After organizing the data in an e�cient way, the next

question to answer is whether HPC resources can e�ectively
compute market indicators. We use the computations of
VPIN and HHI as examples, and treat the computation of
VPIN and HHI on each stock or fund as a separate computa-
tional task. Because these tasks don't require any coordina-
tion among them, they can achieve good speedup as we show
later. A key limitation to achieving the perfect speedup is
the load imbalance. To minimize this imbalance, we dynam-
ically assign work to each process using the manager-worker
approach. To further increase scalability of the computa-
tions on long-term historic data, one could further subdi-
vide the calculations into a series of time-intervals. In th is
section, we also present some evidence that HHI and VPIN
produce strong signals before and during the Flash Crash of
2010.

We start our discussion on the computation of VPIN and
HHI by describing the data used. We use Level 1 data,
i.e., trades, for computing VPIN and HHI. The test data
is divided into two sets. The �rst set of trades covers the
time period of April and May, 2010, containing 45 trading
days. This set contains all trades of SP500 stocks. The total
number of records is about 640 million and the total size is
about 25 GB as CSV �les and 4.4 GB as HDF5 �les.

The second set contains trades of 25 ETFs with the largest
trading volumes. The time period varies from 3 years (2008,
2009, and 2010) to 10 years (2001 { 2010). The total number
of records is about 2.7 billion, and the size is 108 GB in CSV
and 17 GB in HDF5. Clearly, there is a size advantage for
using HDF5 �les.

It is faster to use data in HDF5 �les for computation as
well. For example, on a subset of data from May 2010,
using HDF5 it only took 0.4 seconds to compute VPIN for
Accenture (ACN) stock. However, it took 142 seconds using
the corresponding CSV �les. Using HDF5 �les speeds up the
VPIN computation by a factor of 355. The key di�erence
between using HDF5 and CSV is that using HDF5 �les,
combined with e�cient indexing, one can quickly locate the
desired data records, while using CSV �les, one has to read
through each data record to locate the desired ACN records.

We compute VPIN and HHI for each stock or fund sepa-
rately, in order to raise the \yellow ag" on each of them in-
dependently. We realize that this is not exactly how the orig -

(a) SP500 stocks

(b) Top 25 ETF

Figure 4: Time (seconds) needed to compute HHI
and VPIN using di�erent numbers of processing el-
ements (PEs). The computation is broken up into
500 independent tasks for SP500 data and 25 tasks
for the 25 ETFs. The maximum speedup achieved
is about 11 for computing HHI and 13 for comput-
ing VPIN on SP500 data and about 5 for computing
both HHI and VPIN on the 25 ETFs.

inal authors of VPIN and HHI intended to use them [7,14].
However, as we show in Figure 3, there are strong evidences
that VPIN and HHI can indeed provide early warning for
the Flash Crash of May 6, 2010.

In Figure 3 we show the values of VPIN and HHI for
four individual stocks: Accenture (ACN), CenterPoint En-
ergy (CNP), Hewlett-Packard (HPQ), and Apple (AAPL).
The �rst two are the well known examples where the prices
dropped to one penny per share during the Flash Crash,
HPQ is one of the Dow-Jones stocks signi�cantly a�ected
by the Flash Crash, and AAPL stock has the unusual be-
havior of reaching to $100,000 per share during the same
time period.

The data shown in Figure 3 is from May 6, 2010. For
each 5-minute time interval used to compute HHI, we also
compute the minimum price and maximum price during the
same time interval. In Figure 3, we see that the minimum
price drops to one penny in a number of bins, the earliest of
which is around 14:45. Not all the stock prices fell during
the Flash Crash, in Figure 3 we see a small jump for HPQ
and two sets of tremendous jumps for AAPL.

In Figure 3, the values of VPIN became quite high before



(a) ACN (b) CNP

(c) HPQ (d) AAPL

Figure 3: HHI (blue) and VPIN (red) values on May 6, 2010. The m inimum and maximum prices shown are
computed in each 5-minute bin. Each indicator shows extreme values before the irregular price changes.

the Flash Crash at 14:45. In the case of ACN, there was
a sharp rise for both HHI and VPIN at 13:35 1 . This was
about 70 minutes before the Flash Crash.

For other stocks, either VPIN or HHI showed similar early
warning before the Flash Crash. For example, for CNP,
VPIN values were very high earlier in the day, for HPQ,
VPIN also reached a high level around 13:45 (� 1h before
the Flash Crash), for AAPL, VPIN reaches a high level at
14:45 about half an hour before the unusual event at 15:15.
Combined with the evidences provided by other authors [7,
14], we believe that VPIN and HHI are strong candidates
for providing early warning signals of unusual activities.

Figure 4 shows how the time needed to compute HHI and
VPIN varies with the number of processors used. The sys-
tem used has 24 CPU cores on a compute node and each
node has two network interface to other compute nodes and
�le systems2 . In Figure 4(a), we show the time to compute
HHI and VPIN on SP500 stocks. In this case, the task of
computing HHI or VPIN on each stock is given to a process
that uses one CPU core on a node. These tasks are inde-
pendent of each other in terms of computation, however,
they need to access the same �le system in order to read
the necessary input data and write the �nal output. In Fig-
ure 4(b), we show the time to compute HHI and VPIN on
the 25 ETFs. Again, we distributed the task of computing

1The particularly sharp rise in VPIN and HHI is possibly
linked to a unusually large trade at 13:36:07. The volume
of this single trade is 470,300 shares, which is almost 10%
of the average daily volume for ACN. The impact of such a
large trade on VPIN and HHI needs to be further examined.
2More information about the particular computer
can be found at http://www.nersc.gov/systems/
hopper-cray-xe6/ .

HHI or VPIN for each ETF to a process. Because there are
only 25 tasks, we used a maximum of 8 processing elements.

Overall, as the number of processes increase, the time
needed goes down. However, due to load imbalance among
the tasks and performance variance of the �le system, time
does not vary smoothly. For example, in Figure 4(a), as the
number of PEs vary from 16 to 32, the total execution time
appears to remain the same or slightly increase.

3.3 Query-driven Analysis and
Data Exploration

Typical scienti�c applications require single (or few) que -
ries to be evaluated on extremely large data. In contrast,
screening of �nancial data requires evaluation of a large
number of independent data queries (one query per date=
symbol combination). Similarly, validation of market indi-
cators fundamentally relies on the ability to quickly locat e
and extract data associated with large numbers of indicated
warning periods, e.g, for HHI we �nd 298,956 potential warn-
ings for S&P 500 stocks during April 2010.

To allow analysts to quickly de�ne large sets of queries,
we extend the FastQuery query language using symbolic
queries. A symbolic query is a compact representation of
a large number of queries using reserved keywords (here
$DAT E and $SY MBOL ) to represent data categories. The
user can then select, from simple lists, the speci�c dates and
symbols for which a symbolic query should be executed.
The symbolic query is then automatically expanded into
# dates � # symbols queries. We use standard spreadsheet
and statistics plots (Figure 6) for validation of queries an d
market-indicator warnings.

In the case of market indicators, large sets of warning
events are created automatically by the screening process.



Figure 5: User interface for evaluating market
indicator-based warnings.
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Figure 6: Plot created using our query tool showing
the best OFR (green), BID (blue), PRICE (red),
and total traded volume (SIZE)(black).

Each warning has an associated date, symbol, and time pe-
riod. To extract the data associated with warning events,
we automatically translate warnings to queries of the form:

T Y P E=$DAT E= $SY MBOL=T IME > = start &&
T Y P E=$DAT E= $SY MBOL=T IME < = stop; (1)

where T Y P E identi�es the trades/quotes group. We use
a spreadsheet plot to allow analysts to quickly browse and
select warnings of interest (Figure 5). The duration and
peak warning value are color-coded to ease identi�cation
of long and high-risk warnings. Once a warning query has
been executed, additional information {such as the number
of trades/quotes executed during the warning period{ are
added to the table. To speed-up the analysis of false alarms,
we plan to extend this concept with automatic methods for
de�ning whether an anomaly occurred during a warning pe-
riod.

In the following, we study the parallel performance of
our query system, using the Hopper 2 system at NERSC.
In the scaling experiment, we evaluate 8000 independent
queries as de�ned in Eq. 1 on S&P 500 quotes data for
April 2010. Each date/symbol group contains on average
� 274,151 records, and 47 of the 8838 date/symbol groups
contain 1.5 to 3.9 million records (Figure 7). This con-
stitutes 74.5 GB of uncompressed HDF5 data (13.4 GB

Figure 7: Number of data records (quotes) per
date/symbol group for S&P 500 quotes data for
April 2010.

Figure 8: Time (seconds) needed to evaluate 8000
queries using di�erent numbers of processors on i)
S&P 500 quotes data for April 2010 (blue) and with
indexing (lilac) and ii) the same dataset with 10 �
replication (red) and with indexing (green). Note
the log-scale on the vertical time axis.

as HDF5 with SZIP compression and 100.4 GB as uncom-
pressed csv) and 28.3 GB for all FastBit indices. To evalu-
ate the expected performance on larger amounts of �nancial
data, we replicated each HDF5 dataset 10 times, e�ectively
increasing the number of quotes per date and symbol by
a factor of 10. The replication also emulates storing ten
month's worth of quotes data grouped into periods of ten
trading days. The replicated dataset constitutes 744.7 GB
of uncompressed HDF5 data and 210.2 GB for all FastBit
indices. Both quotes HDF5 �les were created using default
HDF5 settings and are stored on Hopper's Lustre �le sys-
tem using a striping of 24 and a stripe-size of 1MB. We
use a controller-worker-type setup implemented in MPI to
parallelize the query process. The controller schedules the
queries in batches of 10 queries as workers become avail-
able. Once all queries are completed, the controller acquires
all hit-counts from the workers, while the �le o�sets (resul ts)
are stored on the workers to allow for e�cient parallel analy -
sis of the data associated with the queries. We repeated each
experiment ten times and report the average wall-clock time
elapsed to evaluate all queries, including all communication.

Figure 8 shows the results of this parallel query study. We
observe good scalability in all cases and achieve two orders
of magnitude speedup compared to the serial case. Using
CSV data, it takes � 3.5 hours in serial to evaluate all 8000



queries, even though we can compute all queries in a sin-
gle pass, exploiting the fact that data records are sorted by
date, symbol and time in the CSV �le(s). Using HDF5 and
indexing, we can perform the same analysis in parallel in less
than 5 seconds on both datasets; a three orders of magnitude
speed-up compared to using CSV. For the regular quotes
data we do not observe a signi�cant di�erence between the
version with and without FastBit indexing. This behavior
is expected, since the number of records required per query
is low. For the dataset with 10 � replication, we observe
speedups of� 2-4x when using indexing. Interestingly, the
time used for evaluating queries on the 10� replicated data
does not increase by a factor of 10 compared to the regular
quotes data. This is likely due to ine�ciencies with respect
to the HDF5 write: the default chunk-size may be too large
for the small numbers of records per dataset, and/or the
�lesystem performance, which is sensitive to tunable param -
eters like the level of striping and stripe size, resulting i n a
larger I/O overhead for the smaller dataset. This type of
variation in performance is well known: it has been shown
that tuning of HDF5 and �le system parameters can have a
signi�cant impact on I/O performance [12].

4. DISCUSSION

Data organization.
In this work, we demonstrated the bene�t of using a more

e�cient data organization by using the HDF5 �le format.
For computing market indicators (Section 3.2), we see speed-
ups of � 355x by using HDF5 compared to using CSV. This
speedup results directly from more e�cient data access meth -
ods. Organizing and storing �nancial data more e�ciently
has tremendous potential to improve the monitoring and re-
porting of �nancial markets.

Parallel computing.
Large-scale analyses of �nancial data {e.g., query-based

analysis of historical data{ require processing of large amounts
of computationally independent data.The experiments in Se c-
tions 3.2 and 3.3 have shown that we can parallelize these
types of operations e�ectively. The combination of e�cient
data organization and parallel computing enables us to eval-
uate large amounts of queries in seconds rather than hours.
Such results, which stem from a combination of parallel com-
puting, e�cient data I/O and index/search, are consistent
with other studies in forensic cybersecurity analysis [1, 19]
and large-scale scienti�c data analysis [17], where processing
time was reduced from hours or days to minutes or seconds.
We are able to evaluate 8000 queries on a 74.5GB dataset
in � 2 seconds, an operation that takes more than 3.5 hours
in serial using CSV data, a speedup of about 6,300x. The
same operation on the larger 744.7GB dataset still requires
less than 5 seconds.

HPC for early warning systems.
Based on our preliminary results, we believe that early

warning systems can bene�t substantially from HPC re-
search, systems, and tools. Evaluation of the e�ectiveness
of potential early warning indicators requires screening of
large amounts of historical data. Ultimately we need to
be able to compute market indicators in real time, requiring
massively parallel algorithms and high-throughput data ne t-

works to analyze data from large numbers of stocks at once.
At the same time, the real-time data needs to be stored
e�ciently for later analysis. For example, to enable regu-
lators to judge the credibility of an indicated alarm, they
need to be able to quickly locate and analyze similar events
in large amounts of historical data. While our case study
was limited in scope, focusing only on TAQ data, the re-
sults indicate that HPC methods can facilitate many of the
tasks necessary for development, operation, and monitoring
of a market monitoring and alarm system. For use scenar-
ios involving larger amounts of �nancial data, we expect
the computational demands to increase signi�cantly making
HPC methods indispensable.

Future Work.
In the current work, we have encountered inconsistent

data from di�erent sources. For example, di�erent sources
disagree on how many trades of AAPL at $100,000 per share
occurred on May 6, 2010. In the TAQ data, there are four
records of trades at this price, two at 3:29:30 PM with a total
of 895 shares, one at 3:44:51 PM with 695 shares, and one
at 3:49:39 PM with 200 shares. In the Nanex data, there are
also four trades recorded, though the volumes match those
from TAQ, all of the records in Nanex data have the time
stamp of 3:29:30 PM. The o�cial SEC/CFTC report about
the Flash Crash only mentioned two trades at 3:29:30 PM
with a total volume of 895 shares. Clearly, such a discrep-
ancy is a serious issue. Increasing the data quality should
be one important goal for improving transparency and e�-
ciency of �nancial markets.

With respect to data management, we plan to further in-
vestigate improvements of the HDF5 data layout, and tun-
ing of HDF5 and �lesystem parameters to improve I/O per-
formance and e�ciency of data indexing methods. While
grouping the �nancial data by stock and date is intuitive it
also leads to data fragmentation. Storing larger data por-
tions in single arrays, while providing a virtual grouping
API for fast and convenient data access could alleviate this
problem.

The current version of VPIN requires all trades to be
present to determine the function � needed for the �nal
normalization. We plan to develop a variation of VPIN for
real-time computations. It may also be fruitful to evalu-
ate whether using volume-time for binning can improve the
e�ectiveness of HHI.

Quanti�cation of the e�ectiveness of potential early warn-
ing indicators fundamentally relies on the ability to judge
whether a warning is true or false and whether relevant
anomalous behavior is missed by an indicator. We, there-
fore, plan to develop algorithms to automatically detect an o-
malies in historical �nancial data. Evaluation of market in -
dicators and validation of designs and implementations of
real-time market monitoring systems will also bene�t from
realistic high-performance simulations of �nancial marke ts.

5. CONCLUSION
This \early warning" line of inquiry begins to address a

key question regarding the role of high-performance com-
puting in �nance from a federal perspective: Is real-time
high frequency monitoring needed? The SEC/CFTC has
announced their intention to direct many billions from the
�nancial industry to this e�ort, which has been criticized b y
others as unnecessary overkill.



We and our collaborators have come to believe that it
is not overkill. Current post Flash Crash regulatory ap-
proaches are based on\circuit breakers,"which suspend trad-
ing when price or volatility triggers set them o�. These are
very \blunt instruments" that do not allow the market to
self-correct and stabilize, and they can easily make a bad
situation worse. Our tests showed that VPIN, HHI and sim-
ilar indicators could provide early warning signals for a mo re
gradual \slow down, rather than stop" replacement for on/o�
circuit breakers. Our HFT and academic collaborators hold
this opinion strongly as well.

This work explores a number of pressing issues in imple-
menting such an \early warning"system, such as the need for
su�cient computing power to generate the warning signals
and the need for reliable and e�ective data. We demon-
strate that techniques from data-intensive sciences can ad-
dress these issues. Furthermore, we believe that the same
approach, likely with additional computation, are applica -
ble in the area of �nancial market cyber-security, which is
widely acknowledged as important, but also largely ignored
in the regulatory debate.
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